logo
 

Composition, Microstructure, and Surface Barrier Layer Development During Brine Salting

C. Melilli, 1 D. Carco`,1 D. M. Barbano,2 G. Tumino,1 S. Carpino,1 and G. Licitra 1,3

1- CoRFiLaC, Regione Siciliana, 97100 Ragusa, Italy
2- Northeast Dairy Food Research Center, Department of Food Science, Cornell University, Ithaca, NY 14853
3- Dipartimento di Scienze Agronomiche, Agrochimiche e delle Produzioni Animali, Catania University, Via Valdisavoia 5, 95100 Catania, Italy

Abstract

The goal of this study was to characterize the changes in chemical composition, porosity, and structure that occur at the surface of a block of brine-salted cheese and their relationship to the rate at which salt is taken up from the brine. To create a difference in composition, salt uptake, and barrier layer properties, identical blocks of Ragusano cheese were placed in saturated and 18% salt brine at 18°C for 12 d. The overall moisture content and porosity decreased, whereas salt and salt in moisture content increased near the surface of blocks of brine-salted Ragusano cheese for all treatments. The general appearance of the microstructure of the surface of the blocks of brine-salted cheese was much more compact than the microstructure 1 mm inside the block at both brine concentrations. Large differences in porosity of the barrier layer were produced by brine-salting cheese in 18% vs. saturated brine, with cheese in saturated brine having much lower porosity at the surface and taking up much less salt during brining. The macro network of water channels within the microstructure of the cheese was less open near the surface of the block for cheese in both saturated and 18% brine after 4 d. However, no large differences in the size of the macro channels in the cheese structure due to the difference in brine concentration were observed by scanning electron microscopy. It is possible that the shrinkage of the much smaller pore structure within the casein matrix of the cheese is more important and will become more limiting to the rate of salt diffusion. Further microstructure work at higher resolution is needed to answer this question. The calculated decrease in porosity at the exterior 1-mm portion of the block was 50.8 and 29.2% for cheeses that had been in saturated vs. 18% brine for 12 d, respectively. The difference in brine concentration had a very large impact on the salt in moisture content of the cheese. The exterior of the cheese in 18% brine reached a salt in moisture content almost identical to that of the brine very quickly (17.3% at 4 d), whereas the salt in moisture content at the surface of the cheese block in saturated brine was only 11.9% at 4 d. There appears to be some critical concentration of salt in brine above which there is a large negative impact on salt uptake due to the creation of a barrier layer at the surface of the block of cheese.

Keywords: brine, barrier layer, porosity, cheese microstructure

Se vuoi, puoi richiedere la pubblicazione compilando il modulo

D. M. Barbano

Prof. Northeast Dairy Food Research Center, Department of Food Science, Cornell University (USA)